
Workflow Tools for Devops
Mohammed Firdaus

April 21 2022

1

About Me
• I mostly program in Java, Kotlin and Python

• https://www.linkedin.com/in/mohammed-firdaus-mohammed-ab-halim-
55684515/

• https://github.com/firdaus

• Blog @ https://onepointzero.app/

• Youtube - https://onepointzero.app/yt

• Email me - onepointzeroapp@outlook.com

2

https://www.linkedin.com/in/mohammed-firdaus-mohammed-ab-halim-55684515/
https://github.com/firdaus
https://onepointzero.app/
https://onepointzero.app/
mailto:onepointzeroapp@outlook.com

What in the world does the term
“workflow” mean anyway?

3

Workflow

• A workflow is a sequence of tasks or operations. Analogous terms:
Pipelines, Business Process

• A workflow engine is a software application that helps you define, execute
and manage workflows.

4

Problem Statement: scan_and_fix()

5

def scan_and_fix(host):
issues = scan_host(host)
apply_fixes(host, issues)
unresolved_issues = rescan(host)
if unresolved_issues:

failure_report(host, unresolved_issues)
else:

success_report(host)

if __name__ == '__main__':
scan_and_fix("192.168.56.1")

Issues

• What happens when the machine running this function dies when the
code is still running?

• What happens if any of the operations fail?

6

Positive vs Negative Engineering
• Positive engineering is what we typically think engineers do: write code to

achieve an objective.

• Negative engineering is when engineers write defensive code to make
sure the positive code actually runs. For example: what happens if data
arrives malformed? What if the database goes down? What if the
computer running the code fails? What if the code succeeds but the
computer fails before it can report the success? Negative engineering is
characterized by needing to anticipate this infinity of possible failures.

• Workflow tools handle the negative engineering so that you can focus on
the positive engineering.

7Adapted From https://docs.prefect.io/core/ and https://medium.com/the-prefect-blog/positive-and-negative-data-engineering-a02cb497583d

https://docs.prefect.io/core/

Types of Workflow Engines
• We are going to compare and contrast workflow engines by how you define

the workflow i.e. how you do the positive engineering.

• Embedded DSL - the workflow structure is defined as a DAG in a host
language e.g. Airflow, Prefect

• External DSL - The workflow is defined in a separate format (JSON,
YAML, XML, Graphical) e.g. Step Functions, BPMN tools, Netflix
conductor, NiFi, Stackstorm. These tools are often paired with a graphical
workflow editor.

• Language SDK - the workflow features are integrated into the language
itself e.g. Temporal, Cadence, Azure Durable Functions, Infinitic

8

Embedded DSL:Airflow
• Workflows are defined as DAGs - Directed acyclic graphs (means no loops) - in the

host language of Python

• Operators define business logic that you can add to a workflow e.g. a PythonOperator
is used to execute Python Code, S3CreateBucketOperator is used to create an S3
bucket (additional functionality available by installing packages called “providers”)

• A task is an instance of an Operator

• The sequence/order of tasks is defined using the “>>” symbol in Python

• Very popular in the data engineering space for data pipelines

• xcom is used to communicate between tasks

9

https://www.astronomer.io/guides/what-is-an-operator/

Airflow: Defining Tasks

10

download_file = SFTPOperator(
task_id="get-file",
ssh_conn_id="my_sftp_server",
remote_filepath="/{{ ds }}/input.csv",
local_filepath="/tmp/{{ run_id }}/input.csv",
operation="get",
create_intermediate_dirs=True

)

@task()
def do_custom_python_stuff:

..........

Creating a task from an operator

Creating a task to execute arbitrary
Python code (Python operator)

Problem Statement: scan_and_fix()

11

def scan_and_fix(host):
issues = scan_host(host)
apply_fixes(host, issues)
unresolved_issues = rescan(host)
if unresolved_issues:

failure_report(host, unresolved_issues)
else:

success_report(host)

if __name__ == '__main__':
scan_and_fix("192.168.56.1")

Airflow: Scan and Fix Workflow

12

@dag(
schedule_interval=None,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
params={

"host": Param(type='string')
}

)
def scan_and_fix():

choose_report_task = BranchPythonOperator(task_id="choose_report",
python_callable=choose_report)

scan_host() >> apply_fixes() >> rescan() >> choose_report_task

choose_report_task >> failure_report()
choose_report_task >> success_report()

Airflow: Scan Host task

13

@task(retries=10, retry_delay=timedelta(seconds=5))
def scan_host(params=None):

host = params["host"]
print(f"Scanning host {host}")
#
Real scanning code goes here
#
return [Issue()]

External DSL: AWS Step Functions

14

https://aws.amazon.com/step-functions/

AWS Step Functions
• Workflows be authored in the Amazon States Language or using the

graphical “Workflow Studio” (support round-trip engineering)

• “The Amazon States Language is a JSON-based, structured language
used to define your state machine, a collection of states, that can do work
(Task states), determine which states to transition to next (Choice states),
stop an execution with an error (Fail states), and so on.”

• “All work in your state machine is done by tasks. A task performs work by
using an activity or an AWS Lambda function, or by passing parameters to
the API actions of other services.”

15

https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-task-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html

https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-task-state.html

Step Functions: Scan and Fix Workflow

16

Step Functions: Scan and Fix Workflow

17

Step Functions: Scan and Fix Workflow

18

Step Functions: Scan and Fix Workflow

19

Step Functions: scan_host lambda function

20

from dataclasses import dataclass, asdict

@dataclass
class Issue:

id: str = ""
context: str = ""

def lambda_handler(event, context):
host = event["host"]
print(f"Scanning host {host}")
#
Actual scanning logic goes here
#
event["issues"] = [asdict(Issue()), asdict(Issue())]
return event

Language SDK: Temporal
• Available at - https://www.temporal.io/ - Yes, it’s a workflow engine

• Written in Golang

• Fork of Uber Cadence, developed by Temporal Technologies

• Allows you to write workflows as functions in the language of your choice
(provided an SDK exists for that language) - SDKs exists for Java, Golang, PHP
and Typescript (Python is in development)

• Workflows in Temporal are just long running functions - can take days, months or
years to complete

• Not a DSL, Not a graphical tool, Not YAML.

21

https://www.temporal.io/

A little bit more theory
Code needs to separate into two types of methods:

• Workflow Functions - Workflows contain the business logic to be
implemented. It should contain logic for coordinating/orchestration but
should not “affect” the outside world directly. Generally speaking, the
workflow ends when the workflow method “returns”.

• Activity Functions - For defining tasks. Activity methods are how the
workflow methods can change the outside world. Any type of logic that
could possibly have a side effect should be done in an activity method
e.g. API calls to other systems, database queries etc..

22

Temporal: High Level View

23

Temporal: Scan and Fix
Workflow

24

@WorkflowInterface
public interface ScanAndFixWorkflow {

@WorkflowMethod
void scanAndFix(String host);

}

Temporal: Scan and Fix
Workflow

25

public static class ScanAndFixWorkflowImpl implements ScanAndFixWorkflow {
ActivityOptions options = ActivityOptions.newBuilder()

.setScheduleToCloseTimeout(Duration.ofSeconds(2))

.build();
private ScanAndFixActivities activities = Workflow.newActivityStub(ScanAndFixActivities.class,

options);
private Logger logger = Workflow.getLogger(ScanAndFixWorkflowImpl.class);

@Override
public void scanAndFix(String host) {

logger.info("Scanning and fixing: {}", host);
List<Issue> issues = activities.scanHost(host);
activities.applyFixes(host, issues);
List<Issue> unresolvedIssues = activities.rescan(host);
if (unresolvedIssues.isEmpty()) {

activities.successReport(host);
} else {

activities.failureReport(host, unresolvedIssues);
}

}
}

Temporal: ScanAndFix Activities

26

@ActivityInterface
public interface ScanAndFixActivities {

List<Issue> scanHost(String host);

void applyFixes(String host, List<Issue> issues);

List<Issue> rescan(String host);

void successReport(String host);

void failureReport(String host, List<Issue> unresolvedIssues);
}

Temporal: ScanAndFix Activities

27

public static class ScanAndFixActivitiesImpl implements ScanAndFixActivities {
public Logger logger = LoggerFactory.getLogger(ScanAndFixActivitiesImpl.class);

@Override
public List<Issue> scanHost(String host) {

logger.info("Scanning {}", host);
//
// Real scanning code goes here
//
return List.of(new Issue(), new Issue());

}

// Other activity method definitions
// ...
// ...

}

Temporal: ScanAndFix Worker

28

public static void main(String[] args) {
WorkflowServiceStubs service = WorkflowServiceStubs.newInstance();
WorkflowClient client = WorkflowClient.newInstance(service);
WorkerFactory factory = WorkerFactory.newInstance(client);
Worker worker = factory.newWorker("scanandfix-tq");
worker.registerWorkflowImplementationTypes(ScanAndFixWorkflowImpl.class);
worker.registerActivitiesImplementations(new ScanAndFixActivitiesImpl());
factory.start();

}

Starting the Temporal Service
$ git clone https://github.com/temporalio/docker-compose.git
$ cd docker-compose
$ docker-compose up
$ alias tctl='docker exec temporal-admin-tools tctl'

29

$ alias tctl='docker run --network=host -
-rm temporalio/tctl:latest'

$ % tctl workflow run --taskqueue
scanandfix-tq --workflow_type
ScanAndFixWorkflow --input
'"192.168.56.1"'

30

Running execution:
Workflow Id : 22040ba1-264c-4228-adfb-5bf70d2e47a0
Run Id : e6c44945-4c2c-4650-9668-bc284da240e5
Type : ScanAndFixWorkflow
Namespace : default
Task Queue : scanandfix-tq
Args : ["192.168.56.1"]

Progress:
1, 2022-04-20T05:05:20Z, WorkflowExecutionStarted
2, 2022-04-20T05:05:20Z, WorkflowTaskScheduled
3, 2022-04-20T05:05:20Z, WorkflowTaskStarted
4, 2022-04-20T05:05:20Z, WorkflowTaskCompleted
5, 2022-04-20T05:05:20Z, ActivityTaskScheduled
6, 2022-04-20T05:05:20Z, ActivityTaskStarted
7, 2022-04-20T05:05:20Z, ActivityTaskCompleted
8, 2022-04-20T05:05:20Z, WorkflowTaskScheduled
9, 2022-04-20T05:05:20Z, WorkflowTaskStarted
10, 2022-04-20T05:05:20Z, WorkflowTaskCompleted
11, 2022-04-20T05:05:20Z, ActivityTaskScheduled
12, 2022-04-20T05:05:20Z, ActivityTaskStarted
13, 2022-04-20T05:05:20Z, ActivityTaskCompleted
14, 2022-04-20T05:05:20Z, WorkflowTaskScheduled
15, 2022-04-20T05:05:20Z, WorkflowTaskStarted
16, 2022-04-20T05:05:20Z, WorkflowTaskCompleted
17, 2022-04-20T05:05:20Z, ActivityTaskScheduled
18, 2022-04-20T05:05:20Z, ActivityTaskStarted
19, 2022-04-20T05:05:20Z, ActivityTaskCompleted
20, 2022-04-20T05:05:20Z, WorkflowTaskScheduled
21, 2022-04-20T05:05:20Z, WorkflowTaskStarted
22, 2022-04-20T05:05:20Z, WorkflowTaskCompleted
23, 2022-04-20T05:05:20Z, ActivityTaskScheduled
24, 2022-04-20T05:05:20Z, ActivityTaskStarted
25, 2022-04-20T05:05:20Z, ActivityTaskCompleted
26, 2022-04-20T05:05:20Z, WorkflowTaskScheduled
27, 2022-04-20T05:05:20Z, WorkflowTaskStarted
28, 2022-04-20T05:05:20Z, WorkflowTaskCompleted
29, 2022-04-20T05:05:20Z, WorkflowExecutionCompleted

Result:
Run Time: 1 seconds
Status: COMPLETED
Output:

ScanAndFix Output

31

13:05:20.405 [workflow-method-22040ba1-264c-4228-adfb-5bf70d2e47a0-e6c44945-4c2c-4650-9668-
bc284da240e5] INFO ScanAndFix$ScanAndFixWorkflowImpl - Scanning and fixing: 192.168.56.1
13:05:20.437 [Activity Executor taskQueue="scanandfix-tq", namespace="default": 2] INFO
ScanAndFix$ScanAndFixActivitiesImpl - Scanning 192.168.56.1
13:05:20.511 [Activity Executor taskQueue="scanandfix-tq", namespace="default": 2] INFO
ScanAndFix$ScanAndFixActivitiesImpl - Applying 2 fixes on host 192.168.56.1
13:05:20.587 [Activity Executor taskQueue="scanandfix-tq", namespace="default": 2] INFO
ScanAndFix$ScanAndFixActivitiesImpl - Rescanning 192.168.56.1
13:05:20.664 [Activity Executor taskQueue="scanandfix-tq", namespace="default": 2] INFO
ScanAndFix$ScanAndFixActivitiesImpl - Sending success report for host 192.168.56.1

Workflow functions can run for as long
as you need them to

32

@Override
public void scanAndFix(String host) {

logger.info("Scanning and fixing: {}", host);
List<Issue> issues = activities.scanHost(host);
activities.applyFixes(host, issues);

Workflow.sleep(Duration.ofDays(2));

List<Issue> unresolvedIssues = activities.rescan(host);
if (unresolvedIssues.isEmpty()) {

activities.successReport(host);
} else {

activities.failureReport(host, unresolvedIssues);
}

}

Note about Workflow Functions
• Workflow functions need to be deterministic because they are replayed each time the state of the workflow

needs to be rebuilt.

• From Wikipedia “a deterministic algorithm is an algorithm which, given a particular input, will always produce
the same output, with the underlying machine always passing through the same sequence of states”.

• Practically this means that:

• Use Workflow.currentTimeMillis() instead of System.currentTimeMillis() to get the current
time

• Use Workflow.randomUUID() to generate UUIDs, Workflow.newRandom() to generate random
numbers

• Use Workflow.getLogger() to obtain a logger that is replay aware

• Anything that talks to the outside world should be done in activity functions.

33

More Temporal Concepts

• Signal Methods/Functions - While the workflow is running it be can be
triggered by external code when certain events occur using signal
methods.

• Query Methods/Functions - Query methods allow external code to pull
information about the current state of the workflow.

34

E-commerce Loyalty Membership Tier
• Lets implement a loyalty program where customers are assigned a

membership tier of MEMBER, SILVER, GOLD or PLATINUM based on the
amount they spent the previous month.

• MEMBER spent < 100

• SILVER spent < 500

• GOLD spent < 1000

• PLATINUM for 1000 and above

35

Workflow Interface
@WorkflowInterface
public static interface LoyaltyWorkflow {

@QueryMethod
Tier currentTier();

@QueryMethod
long transactionsThisMonth();

@SignalMethod
void recordTransaction(long value);

@WorkflowMethod
void enroll(String customerId);

}

36

Signal and Query Methods
public static class LoyaltyWorkflowImpl implements LoyaltyWorkflow {

long transactionsThisMonth = 0;
Tier tier = Tier.MEMBER;

@Override
public Tier currentTier() {

return tier;
}

@Override
public long transactionsThisMonth() {

return transactionsThisMonth;
}

@Override
public void recordTransaction(long value) {

transactionsThisMonth += value;
}
.
.

37

Workflow Method
@Override
public void enroll(String customerId) {

Logger logger = Workflow.getLogger("loyalty-" + customerId);
while (true) {

transactionsThisMonth = 0;
Instant now = Instant.ofEpochMilli(Workflow.currentTimeMillis());
Instant firstOfNextMonth = firstOfNextMonth();
logger.info("Sleeping until {}", firstOfNextMonth);
Workflow.sleep(Duration.between(now, firstOfNextMonth));
if (transactionsThisMonth < 100) {

tier = Tier.MEMBER;
} else if (transactionsThisMonth < 500) {

tier = Tier.SILVER;
} else if (transactionsThisMonth < 1000) {

tier = Tier.GOLD;
} else {

tier = Tier.PLATINUM;
}

}
}

38

Querying and Signaling
Start the workflow specifying an ID
$ tctl workflow start --taskqueue loyalty-tq --workflow_type "LoyaltyWorkflow" \

--input "\"firdaus\"" --execution_timeout 315360000 \
--workflow_id "customer-a"

Record a transaction (signal)
$ tctl workflow signal --workflow_id "customer-a" --name "recordTransaction" --input "25"

Query the transactions this month
$ tctl workflow query --workflow_id "customer-a" --query_type "transactionsThisMonth"

Query the current tier
$ tctl workflow query --workflow_id "customer-a" --query_type "currentTier"

39

Other Features
• Cron workflows

• Child workflows

• Long running activities - heartbeat, activity completion

• Workflow history archival

• Untyped stubs (useful for DSLs or invoking activities / workflows across different languages)

• Workflow filtering / Search Attributes

• Namespaces

• Any many more……

40

Ecosystem
• Temporal Service (written in Golang)

• Database backends: Cassandra and MySQL (PostgreSQL support is beta)

• Search attributes support requires ElasticSearch and Kafka

• SDKs - Golang and Java are actively developed by Temporal Technologies. Python, Ruby
and .NET have community contributed Cadence clients so it’s only a matter of time before
they are ported to Temporal.

• temporal-web (http://localhost:8088)

• CLI - tctl

• Helm chart

41

http://localhost:8088

Use Cases
• Microservice Orchestration

• Sharing economy use cases

• Subscriptions

• Loyalty / Gamification

• Marketing automation

• CI / CD Pipelines

• DSLs / Graphical Tools

• SAGA Pattern

• Improve code readability of business processes span long durations of time.

42

Going Deeper
• [Uber Open Summit 2018] Cadence: The Only Workflow Platform You'll

Ever Need
https://www.youtube.com/watch?v=llmsBGKOuWI

• Uber Cadence: Fault Tolerant Actor Framework
https://www.youtube.com/watch?v=qce_AqCkFys

• Forum: https://community.temporal.io/

43

https://www.youtube.com/watch?v=llmsBGKOuWI
https://www.youtube.com/watch?v=qce_AqCkFys
https://community.temporal.io/

Thank You

Q&A

44

